日韩女人性开放视频,性刺激的大陆三级视频,国产人碰人摸人爱视频,电家庭影院午夜

歡迎您訪問:瑞昌明盛自動化設備有限公司,我司將竭誠為您服務!
PPD512A10-150000脈沖隔離模塊卡件

主頁 > 產品中心 > RELIANCE

PPD512A10-150000脈沖隔離模塊卡件

類目:RELIANCE
型號:PPD512A10-150000
全國服務熱線:15270269218
手機:15270269218
微信:15270269218
QQ:3136378118
Email:3136378118@qq.com

在線咨詢
產品詳情
產品廣泛應用于冶金、石油天然氣、玻璃制造業(yè)、鋁業(yè)、石油化工、煤礦、造紙印刷、紡織印染、機械、電子制造、汽車制造、塑膠機械、電力、水利、水處理/環(huán)保、鍋爐供暖、能源、輸配電等等。
主營DCS控制系統(tǒng)備件,PLC系統(tǒng)備件及機器人系統(tǒng)備件,
優(yōu)勢品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各種進口工業(yè)零部件

PPD512A10-150000脈沖隔離模塊卡件 PPD512A10-150000脈沖隔離模塊卡件 PPD512A10-150000脈沖隔離模塊卡件 PPD512A10-150000脈沖隔離模塊卡件
冶煉節(jié)奏提供下列信息支持匹配過程:
1)預計現有大包澆完鋼水的時間。
2)上一工位(精煉)鋼包出鋼時間的顯示(由上一工位傳入)。
3)根據當前的澆鑄鋼種、中包重量、溫度和大包剩余鋼水的重量和上一工位鋼包出鋼時間計算出建議穩(wěn)定拉速和建議大拉速以匹配冶煉節(jié)奏。該信息周期性刷新并顯示在HMI上。
2.2.4物料跟蹤
過程計算機系統(tǒng)將對各包鋼水從到達回轉臺開始跟蹤,直至切割成定尺鑄坯,計算機將記錄各包鋼水在連鑄過程中不同位置時狀態(tài)的歷史信息。物料跟蹤主要包括爐次跟蹤、鑄流跟蹤、出坯區(qū)板坯跟蹤。
2.2.4.1爐次跟蹤
爐次跟蹤主要包括每一包鋼水信息(澆次、爐次、成份、鋼種等);鋼水從到達回轉臺到離開回轉臺的信息采集(到達、離開的時間、重量、溫度等);每爐鋼水所生成的板坯信息(板坯數目、規(guī)格等)。這些數據都保存到數據庫中,將用于操作員查詢、分析和報表生成。
2.2.4.2鑄流跟蹤
鑄流跟蹤從中包、結晶器、鑄流本體到板坯切割整個過程中的生產信息:自動統(tǒng)計介質澆次使用量(如水、氣、煤氣等)并存入數據庫,自動進行爐次接縫跟蹤和異常事件響應,系統(tǒng)將整個區(qū)域的鑄坯分成許多邏輯‘分段’,將每個事件與每個分段的具體位置聯系在一起,跟蹤每個分段的過程信息和事件,將收集到的每分段鑄坯的歷史信息,作為鑄坯質量判定的依據。
2.2.4.3板坯跟蹤
跟蹤輸出區(qū)(從切割機到板坯離開輸出輥道時)的板坯位置,收集每塊板坯經過的處理信息(包括噴號、去毛刺、稱重等);同時也收集上線板坯的信息(將由此送往下一工序的板坯)
2.2.5生產信息查詢、管理。
對于實時采集的主要的現場數據在
人機界面
上實時顯示(當前爐次、鋼種、規(guī)格、冷卻水量等),對于保存的生產信息(澆次信息、爐次信息、板坯信息等)可以進行查詢,添加、修改、刪除操作。將重要的數據和操作信息保存到數據庫形成歷史數據和日志文件,并可以生成歷史曲線或導出到分析軟件中進行分析,給工藝人員提供查找故障,分析工藝的依據和手段。
2.3.主要設備信息管理
將大包、中包、結晶器、扇形段的使用維護信息(壽命、每次維修的具體信息、廠家、材料等)存入數據庫并可對其信息進行查詢、編輯和維護。。
2.4工藝控制數學模型
2.4.1二次冷卻水控制數學模型
過程計算機根據不同的鋼種,斷面尺寸和其他工藝參數,根據熱傳導理論和經驗公式推導出二次冷卻水數學控制模型。過程計算機根據采集到的實際拉坯速度計算出各二次冷卻區(qū)冷卻水流量,但這樣計算出的冷卻水量與拉速的函數關系是離散的,這必然給水量控制帶來大量復雜的計算工作;由于水量控制的不連續(xù)性,必然影響鑄坯的表面質量,所以采用小二乘法進行擬合的方法,使冷卻水量與拉速之間形成二次方程函數關系。二次方程式可表示為:
Qi=Ai*Vg↑2+Bi*Vg+Ci
Qi:(l/min)對應二冷某一段的水量設定值
Vg:(m/min)拉坯速度
Ai、Bi、Ci:對應于該段的水量系數
根據采集到的實際拉坯速度和二次方程式計算出的水量,還要根據采集到的實際中間包溫度、二冷水溫度等因素進行動態(tài)補償和修正再下載到基礎自動化。
2.4.2佳切割計算模型
佳切割優(yōu)化模型包括佳尾坯切割和換中包連澆時佳長度切割,佳切割優(yōu)化模型的目的是為大可能的減少鋼坯量的損失,使廢坯達到少。Smelting rhythm provides the following information to support the matching process:
1) It is estimated that the time for the existing ladle to finish pouring molten steel.
2) Display of ladle tapping time of the previous station (refining) (transferred from the previous station).
3) According to the current casting steel type, ladle weight, temperature, the weight of the remaining molten steel in the ladle and the ladle tapping time at the previous station, the recommended stable casting speed and the recommended maximum casting speed are calculated to match the smelting rhythm. This information is refreshed periodically and displayed on the HMI.
2.2.4 Material tracking
The process computer system will track each ladle of molten steel from its arrival at the rotary table until it is cut into a fixed length billet. The computer will record the historical information of the status of each ladle of molten steel at different positions during the continuous casting process. Material tracking mainly includes furnace tracking, casting flow tracking and slab tracking in the billet area.
2.2.4.1 Heat tracking
The furnace tracking mainly includes the information of each ladle of molten steel (casting times, furnace times, components, steel grades, etc.); Information collection of molten steel from arrival to departure from the rotary table (arrival and departure time, weight, temperature, etc.); Slab information generated by each furnace of molten steel (slab number, specification, etc.). These data are saved in the database for operator query, analysis and report generation.
2.2.4.2 Casting flow tracking
Casting stream tracking: production information in the whole process from tundish, mold, casting stream body to slab cutting: automatically count the usage of medium casting times (such as water, gas, gas, etc.) and store it in the database, automatically track furnace seams and respond to abnormal events. The system divides the whole area into many logical 'segments', linking each event with the specific location of each segment, Track the process information and events of each segment, and use the collected historical information of each segment as the basis for slab quality judgment.
2.2.4.3 Slab tracking
Track the slab position in the output area (from the cutting machine to the time when the slab leaves the output roller table), and collect the processing information of each slab (including spray number, deburring, weighing, etc.); At the same time, it also collects the information of online slabs (slabs to be sent to the next process)
2.2.5 Production information query and management.
For the main on-site data collected in real time
interface
The real-time display (current furnace, steel type, specification, cooling water volume, etc.) on the system enables you to query, add, modify, and delete the saved production information (casting information, furnace information, slab information, etc.). Save important data and operation information to the database to form historical data and log files, and generate historical curves or export them to the analysis software for analysis, so as to provide technologists with the basis and means to find faults and analyze processes.
2.3. Main equipment information management
Store the use and maintenance information (life, specific information of each repair, manufacturer, materials, etc.) of large package, medium package, mold and sector section into the database and query, edit and maintain the information..
2.4 Mathematical model of process control
2.4.1 Mathematical model of secondary cooling water control
The process computer deduces the mathematical control model of secondary cooling water according to different steel grades, section sizes and other process parameters, heat conduction theory and empirical formula. The process computer calculates the cooling water flow in each secondary cooling zone according to the actual drawing speed collected, but the functional relationship between the calculated cooling water flow and the drawing speed is discrete, which will inevitably bring a lot of complex calculation work to the water flow control; Because the discontinuity of water volume control will inevitably affect the surface quality of the slab, the least square fitting method is adopted to form a quadratic equation function relationship between cooling water volume and casting speed. The quadratic equation can be expressed as:
Qi=Ai*Vg↑2+Bi*Vg+Ci
Qi: (l/min) water volume setting value corresponding to a section of secondary cooling
Vg: (m/min) casting speed
Ai, Bi, Ci: water coefficient corresponding to this section
According to the collected actual casting speed and the water volume calculated by the quadratic equation, dynamic compensation and correction shall be made according to the collected actual tundish temperature, secondary cooling water temperature and other factors, and then downloaded to basic automation.
2.4.2 Optimal cutting calculation model
The optimal cutting optimization model includes the optimal tail billet cutting and the optimal length cutting when changing the tundish for continuous casting. The purpose of the optimal cutting optimization model is to reduce the loss of billet as much as possible and minimize the waste billet.